Hundal, G., Hundal, M. S., Kumar, S.. Singh, H. \& Sanz-Aparicio. J. (1995). Acta Cryst. C51, 1459-1462.

Hunter, C. A. (1995). Angew. Chem. Int. Ed. Engl. 27. 1009-1020.
Izaat, R. M., Pawlak, K., Bradshaw, J. S. \& Bruening. R. L. (1991). Chem. Rev. 91, 1721-2085.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory. Tennessee, USA.
Kumar, S., Singh, R. \& Singh, H. (1992. J. Chem. Soc. Perkin Trans. 1, pp. 3049-3053.
Lehn, J.-M. (1988). Angew. Chem. Inr. Ed. Engl. 27, 89-112.
Nardelli, M. (1976). Comput. Chem. 7. 95-98.
Takagi, M. \& Nakamura, H. (1986). J. Coord. Chem. 15, 53-82
Zachariasen. W. H. (1968). Acta Crast. A24. 212-216.

Acta Cryst. (1996). C52, 1236-1238

## 4,4-Dibenzyl-1,4-dihydroisoquinoline

David E. Minter, Kevin W. Hinkle, Mariusz Krawiec and William H. Watson

Department of Chemistry, Texas Christian University; Fort Worth, TX 76129,USA. E-mail: kraw'iec@ gamma.is.tcu.edu
(Received 16 June 1995; accepted 27 November 199.5)


#### Abstract

The title compound, 4,4-dibenzyl-1,4-dihydroisoquinoline, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}$, is one of the few stable derivatives of 1,4-dihydroisoquinoline for which structures have been reported so far. In the solid state the compound exhibits an interesting conformation with both benzyl groups at C 4 folded symmetrically toward the heterocyclic system.


## Comment

The nitrogen-containing ring of the 1,4-dihydroisoquinoline moiety is in the flattened boat conformation with Cl and C 4 deviating from the least-squares plane by 0.183 and $0.124 \AA$, respectively. The deviation of the remaining atoms ranges from 0.036 to $0.077 \AA$.


Almost all $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances as well as intra-annular bond and torsion angles in the 1,4dihydroisoquinoline moiety do not differ significantly from the corresponding distances and angles in other compounds reported (Gieren, Burger \& Einhellig, 1973; Weidner, Maas \& Würthwein, 1989; Vogel, Delavier, Jones \& Doring, 1991; Richter-Addo, Knight, Dewey, Arif \& Gladysz, 1993; Pich, Bishop, Craig \& Scudder,
1994). The most noticeable difference in the geometry of the 1,4 -dihydroisoquinoline system is the significant enlargement of the intra-annular bond angle $\mathrm{N} 2-\mathrm{C} 3-$ C 4 to $129.0(2)^{\circ}$ versus $121.5-125.0^{\circ}$ reported for other structures. The relative enlargement of the angle may result from the presence of two bulky benzyl groups at the adjacent C atom ( C 4 ).


Fig. 1. Molecular structure showing $30 \%$ probability displacement ellipsoids. Displacement ellipsoids for H atoms are of arbitrary size.

Both benzyl substituents at C 4 are twisted toward the isoquinoline moiety in a similar fashion, yet they are not equivalent. The $\mathrm{C} 4-\mathrm{C} 9$ bond is shorter by $0.015 \AA(5 \sigma)$ than the $\mathrm{C} 4-\mathrm{Cl} 6$ bond. Also, the $\mathrm{C} 4-$ $\mathrm{C} 16-\mathrm{Cl} 7$ angle is significantly smaller ( $3.2^{\circ}$ or $16 \sigma$ ) than its counterpart, $\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10$. The two phenyl rings of the benzyl groups are twisted differently with respect to the isoquinoline system. Whereas the torsion angles around the first single bond (i.e. C4-C9 and $\mathrm{C} 4-\mathrm{C} 16$ ) are virtually equivalent for both groups, the torsion angles around the second bond ( $\mathrm{C} 9-\mathrm{Cl} 0$ and $\mathrm{C} 16-\mathrm{Cl}$ ) differ by about $20^{\circ}$. Thus, the dihedral angle between the benzene ring and the plane dissecting the methylene group is $68.1^{\circ}$ for one benzyl substituent (C9-C15) and $89.0^{\circ}$ for the other (C16-C22). The planes dissecting the methylene groups are almost perpendicular to the isoquinoline moiety for both benzyl substituents. The discussed angular differences between the two benzyl groups can be rationalized by different packing interactions acting on both phenyl rings.

The isoquinoline moieties are arranged in a parallel pattern in the crystal (Fig. 2) with the distance between


Fig. 2. Packing diagram viewed down the $b$ axis.
the least-squares planes of the two adjacent aromatic rings being $3.42 \AA$. Benzene rings from one of the benzyl groups (C17-C22) are also packed parallel, with the distance between the adjacent rings being $3.52 \AA$.

## Experimental

4,4-Dibenzyl-1,4-dihydroisoquinoline was prepared from sequential benzylations of the boron-activated enamines derived from the reaction of isoquinoline with sodium triethylborohydride (Minter \& Re, 1988). The product was purified by recrystallization from THF/ligroin. Colorless crystals with melting point $389-390 \mathrm{~K}$ were obtained.

## Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}$
$M_{r}=311.43$
Monoclinic
$P 2_{1} / n$
$a=14.891$ (2) $\AA$
$b=7.3102(11) \AA$
$c=16.1682(10) \AA$
$\beta=92.380(7)^{\circ}$
$V=1758.5(4) \AA^{3}$
$Z=4$
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Rigaku AFC-6S diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan (North, Phillips \& Mathews, 1968) $T_{\text {min }}=0.927, T_{\text {max }}=$ 1.000

5575 measured reflections
3710 independent reflections

| C7 | $0.0311(2)$ | $0.68(4(3)$ | $-0.1140(1)$ | $0.0565(10)$ |
| :--- | :--- | :--- | :--- | :--- |
| C8 | $0.0562(2)$ | $0.5058(3)$ | $-0.0921(1)$ | $0.0482(6)$ |
| C8a | $0.1276(1)$ | $0.4737(3)$ | $-0.0358(1)$ | $0.0373(6)$ |
| C9 | $0.2567(1)$ | $0.7169(3)$ | $0.1337(1)$ | $0.0395(6)$ |
| C10 | $0.1747(1)$ | $0.7262(3)$ | $0.1859(1)$ | $0.0372(6)$ |
| C11 | $0.1229(2)$ | $0.8825(3)$ | $0.1869(1)$ | $0.0476(8)$ |
| C12 | $0.0505(2)$ | $0.8944(4)$ | $0.2377(1)$ | $0.0561(10)$ |
| C13 | $0.0292(2)$ | $0.7493(4)$ | $0.2878(1)$ | $0.0591(10)$ |
| C14 | $0.0808(2)$ | $0.5939(3)$ | $0.2869(1)$ | $0.0536(10)$ |
| C15 | $0.1532(2)$ | $0.5829(3)$ | $0.2366(1)$ | $0.0455(6)$ |
| C16 | $0.3436(2)$ | $0.6059(4)$ | $0.0142(2)$ | $0.0567(10)$ |
| C17 | $0.3549(2)$ | $0.4750(4)$ | $-0.0559(2)$ | $0.0600(8)$ |
| C18 | $0.3960(2)$ | $0.307(5)$ | $-0.0418(2)$ | $0.0823(14)$ |
| C19 | $0.3999(3)$ | $0.1785(6)$ | $-0.1039(3)$ | $0.1115(17)$ |
| C20 | $0.3675(3)$ | $0.22(74)$ | $-0.1824(3)$ | $0.1199(19)$ |
| C21 | $0.3282(3)$ | $0.3867(7)$ | $-0.1980(2)$ | $0.1026(18)$ |
| C22 | $0.3222(2)$ | $0.5133(5)$ | $-0.1350(2)$ | $0.0742(14)$ |

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

| N2-Cl | 1.454 (3) | C4a-C8a | 1.379 (3) |
| :---: | :---: | :---: | :---: |
| N2-C3 | 1.262 (2) | C5-C6 | 1.380 (3) |
| $\mathrm{Cl}-\mathrm{C8a}$ | 1.504 (3) | C6-C7 | 1.380 (3) |
| C3-C4 | 1.510 (3) | C7-C8 | 1.372 (3) |
| C4-C4a | 1.509 (2) | C8-C8a | 1.391 (3) |
| C4-C9 | 1.552 (3) | C9-C10 | 1.514 (2) |
| C4-C16 | 1.567 (3) | C16-C17 | 1.498 (4) |
| C4a-C5 | 1.394 (3) |  |  |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$ | 118.2 (2) | C5-C6-C7 | 120.3 (2) |
| $\mathrm{N} 2-\mathrm{Cl}-\mathrm{C8} \mathrm{a}^{\text {a }}$ | 116.7 (2) | C6-C7-C8 | 119.0 (2) |
| $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ | 128.9 (2) | C7-C8-C8a | $121.2(2)$ |
| C3-C4-C4a | 110.6 (2) | $\mathrm{Cl}-\mathrm{C8}-\mathrm{C} 4 \mathrm{a}$ | 120.9 (2) |
| C9-C4-C16 | 106.8 (2) | $\mathrm{Cl}-\mathrm{C8}-\mathrm{C} 8$ | 119.2 (2) |
| C4-C4a-C5 | 121.6 (2) | C4a-C8a-C8 | 120.0 (2) |
| C4- $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 8 \mathrm{a}^{\text {a }}$ | 119.8 (2) | C4-C9-C10 | 117.3 (2) |
| C5-C4a-C8a | 118.6 (2) | C4-Cl6-C17 | 114.1 (2) |
| C4a-C5-C6 | 120.8 (2) |  |  |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 8 \mathrm{a}$ | -17.6(3) | C3-C4-C16-C17 | 58.4 (3) |
| $\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ | -1.0(3) | $\mathrm{C} 4 \mathrm{a}-\mathrm{C} 4-\mathrm{C16-C17}$ | -61.7(3) |
| $\mathrm{N} 2-\mathrm{Cl}-\mathrm{C8}-\mathrm{C} 4 \mathrm{a}$ | 17.5 (3) | C4-C4a-C8a-Cl | 1.0 (2) |
| N2-C3-C4-C4a | 18.7 (2) | C4-C9-C10-C11 | -112.8(2) |
| C3-C4-C4a-C8a | -17.3(2) | $\mathrm{C} 4-\mathrm{C} 9-\mathrm{ClO}-\mathrm{Cl5}$ | 70.7 (2) |
| C3-C4-C9-C10 | -67.0)(2) | $\mathrm{C} 4-\mathrm{C16-C17-C18}$ | -90.5 (3) |
| C4a-C4-C9-Cl) | 56.5 (2) | C4-C16-C17-C22 | $87.0(3)$ |

All non-H atoms were refined with anisotropic displacement parameters. The H atoms were refined isotropically. The C H distances range from 0.90 (2) to $1.05(4) \AA$ and $B_{\mathrm{i} \circ \mathrm{o}}$ for the H atoms ranges from 3.4 (4) for H 9 A to $12(1) \AA^{2}$ for H 18 and H 19 . The range of the aromatic $\mathrm{C}-\mathrm{C}$ bonds for the two benzene rings is $1.368(7)-1.387(5) \AA$, with an average of $1.378 \AA$ and e.s.d. of $0.005 \AA$. The average experimental e.s.d. for the 12 bonds is $0.005 \AA$. The range of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the benzene rings is $118.0(3)-121.1(3)^{\circ}$, with an average of $120.0^{\circ}$ and e.s.d. of $1.0^{\circ}$. The average experimental e.s.d. for the 12 angles is $0.3^{\circ}$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL in TEXSAN (Gilmore, 1984). Program(s) used to refine structure: $L S$ in TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976), PLUTO (Motherwell \& Clegg, 1978). Software used to prepare material for publication: PLATON (Spek, 1990).

[^0]
## References

Gieren, A., Burger, K. \& Einhellig, K. (1973). Angew. Chem. Int. Ed. Engl. 12, 157-158.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Minter, D. E. \& Re, M. A. (1988). J. Org. Chem. 53. 2653-2655.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pich, K. C., Bishop, R., Craig, D. C. \& Scudder, M. L. (1994). Aust. J. Chem. 47, 837-851.

Richter-Addo, G. B., Knight, D. A., Dewey, M. A., Arif, A. M. \& Gladysz, J. A. (1993). J. Am. Chem. Soc. 115, 11863-11873.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Vogel, C., Delavier, P., Jones, P. G. \& Doring. D. (1991). Tetrahedron Lett. 32, 1409-1412.
Weidner, R., Maas, G. \& Würthwein, E.-U. (1989). Chem. Ber. 122. 1711-1718.

Acta Cryst. (1996). C52, 1238-1239

# Anti-Cancer Agents. I. $N, N, N^{\prime}, N^{\prime}$-Tetraacetylhexamethylenediamine 

S.-W. Zhang, Q. Liu, Y. G. Wei and M.-C. Shao<br>Department of Chemistry, Peking University, Beijing 100871, People's Republic of China

(Received 8 June 1995; accepted 30 October 1995)


#### Abstract

The centrosymmetric molecule $N, N, N^{\prime}, N^{\prime}$-tetraacetylhexamethylenediamine, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, occupies a special position, with only half of the molecule in the asymmetric unit. Each terminal $N, N$-bisacetylamine group is planar but not twofold symmetric.

\section*{Comment}

Since the discovery that dimethyl sulfoxide (DMSO) induces erythroid differentiation in murine virus-induced erythroleukemic cells (Friend, Scher, Holland \& Sato, 1971), numerous chemical compounds such as butyric acid (Leder \& Leder, 1975), N,N-dimethylacetamide, hexamethylenebisacetamide (HMBA) (Reuben, Wife, Breslow, Rifkind \& Marks, 1976) and retinoic acid (Strickland \& Mahdavi, 1978) have been demonstrated


[^1]to have this type of activity. HMBA, as an effective differentiating agent, is used in Phase II clinical trials (Andreeff et al., 1992). The title compound, (I), is slightly more potent and somewhat more effective than HMBA. As a step towards understanding the molecular mechanism by which this compound initiates cell differentiation, identifying the structure-activity relationship and providing structural data for drug design, its crystal structure has been determined.

(I)

Each acetyl group can assume one of the two possible conformations with respect to the central hydrocarbon chain: one with the carbonyl O atom cis to the chain and the other with the methyl group cis to the chain. In the observed structure (Fig. 1), the two acetyl groups at each end have different conformations. The molecule is centrosymmetric and the asymmetric unit of the crystal contains only half the molecule. The $N, N$-bisacetylamine group is planar, but the possibility of twofold symmetry about the $\mathrm{N}-\mathrm{C}(3)$ bond is not realised.


Fig. 1. Molccular structure showing $50 \%$ probability displacement ellipsoids for non-H atoms.

## Experimental

The title compound was synthesized by the reaction of HMBA with excess acetic anhydride (Haces, Breitman \& Driscoll, 1987). The product was recrystallized in ether.

## Crystal data

$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=284.4$
Monoclinic
$P 2_{1} / n$
$a=8.978$ (2) $\AA$
$b=8.689(2) \AA$
$c=10.702(2) \AA$
$\beta=106.98(3)^{\circ}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 20
reflections
$\theta=6-10^{\circ}$
$\mu=0.081 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block

Mo $K \alpha$ radiation
Cell parameters from 20
reflections
$\theta=6-10^{\circ}$
$\mu=0.081 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block


[^0]:    Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1166). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]:    (C) 1996 International Union of Crystallography

    Printed in Great Britain - all rights reserved

